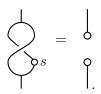
Summer semester 2021

Claudia Scheimbauer Eilind Karlsson

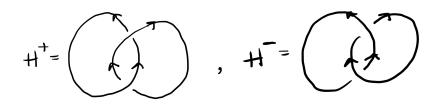
BORDISMS AND TFTS - EXERCISE 11

- (1) (co)Commutativity of Hopf algebras
 - (a) Let H be a Hopf algebra in the category $\operatorname{Vect}_{\Bbbk}$. Prove that the relation $S^2 = \operatorname{id}_H$ is equivalent to



- (b) Let H be a finite dimensional Hopf algebra (again in $\operatorname{Vect}_{\Bbbk}$). Assume that the antipode S has odd order (i.e. the smallest positive n such that $S^n = \operatorname{id}_H$ is odd). Prove that H is commutative and cocommutative. Conclude that $S = \operatorname{id}_H$ in this situation.
- (c) Can you find an example of such a Hopf algebra?
- (2) Reidermeister moves and the Jones polynomial
 - (a) Show that the below move is a consequence of the three Reidermeister moves (given in the student presentation on Tuesday 22.06).

- (b) Compute the Jones polynomial for the positive Hopf link H^+ in two different ways: First by the Kaufmann bracket and then using the skein relations.
- (c) Compute the Jones polynomial of the negative Hopf link H^- . Do you see any relation between this result and that of the previous part-exercise?



Definition. A Lie algebra is a vector space \mathfrak{g} together with an alternating bilinear map $[-,-]: \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$, called the *Lie bracket*, satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0 for all $x, y, z \in \mathfrak{g}$.

- (3) Lie algebras
 - (a) Let $\mathfrak{sl}_2(\mathbb{C})$ be the vector space of all two-by-two complex matrices with zero trace. Prove that the Lie bracket given by the commutator (i.e. [A, B] = AB - BA) gives $\mathfrak{sl}_2(\mathbb{C})$ the structure of a Lie algebra.
 - (b) Show that any associative k-algebra A inherits a structure of a Lie algebra by using the commutator, i.e. [a, b] = ab ba for all $a, b \in A$.
- (4) Food for thought (Hard!)
 - (a) Consider the inclusion $\iota : (X \setminus Z, A \setminus Z) \hookrightarrow (X, A)$. Prove surjectivity of the induced morphism $\iota_* : N_n(X \setminus Z, A \setminus Z) \to N_n(X, A)$ for $\overline{Z} \subseteq int(A)$. Can you also prove injectivity of ι_* ? (This is Exercise 3 in the notes from the student presentation on Wednesday 23.06. See there for more details.)