summer semester 2020

Advanced Topics in Algebraic Topology — Exercise Sheet 13

Exercise class: Friday, 24th of July, 11-12

Website with further material, including exercise sheets: https://www.groups.ma.tum.de/algebra/scheimbauer/advanced-topics-in-algebraic-topology/

The goal for this exercise sheet is to prove deRham's theorem relating singular cohomology of a manifold with its deRham cohomology. In particular this shows that deRham cohomology is a purely topological invariant.

This is essentially a summary of Chapter 18 in Lee's book (Introduction to smooth manifolds) where you can find the details.

We start by recalling the definition of the singular (co)homology (with coefficients in \mathbb{R})¹ of a topological space X:

• For each $n \in \mathbb{N}$, consider the topological *n*-simplex

$$\Delta^{n} \coloneqq \{ x \in \mathbb{R}^{n+1} \mid \sum_{i=0}^{n} x_{i} \le 1 \text{ and } \forall i \colon x_{i} \ge 0 \}$$

$$(1)$$

which is equipped with coface maps $d^i = d_n^i \colon \Delta^{n-1} \to \Delta^n$, induced by the inclusion $\mathbb{R}^n \to \mathbb{R}^{n+1}$ which inserts a zero at position $0 \leq i \leq n$.

• We define the singular chain complex $(C_*(X, \mathbb{R}), d_{sing})$ of X as follows: The term $C_n(X, \mathbb{R})$ is the \mathbb{R} -vector space with a basis given by the set of continuous maps $\Delta^n \to X$ (this vector space is *huge*); the differential $d_{sing}: C_n(X, \mathbb{R}) \to C_{n-1}(X, \mathbb{R})$ is given by sending a basis vector $\sigma: \Delta^n \to X$ to the alternating sum

$$d_{\text{sing}}(\sigma) \coloneqq \sum_{i=0}^{n} (-1)^{i} \sigma \circ d_{n}^{i} \in \mathcal{C}_{n-1}(X, \mathbb{R})$$
(2)

- The singular cochain complex $C^*(X, \mathbb{R}) := C_*(X, \mathbb{R})^{\vee}$ is obtained from $C_*(X, \mathbb{R})$ by passing to the \mathbb{R} -dual vector space² in each term (this makes the huge vector space even more humongous).
- The singular homology $\mathrm{H}^{\mathrm{sing}}_{*}(X)$ is defined as the homology of the chain complex $\mathrm{C}_{*}(X,\mathbb{R})$; similarly the singular cohomology is defined as the cohomology of the cochain complex $\mathrm{C}^{*}(X,\mathbb{R})$. Note that in fact we have $\mathrm{H}^{*}_{\mathrm{sing}}(X) = \mathrm{H}^{\mathrm{sing}}_{*}(X)^{\vee}$; you may take this as the definition.

When X is a manifold, we can consider the subcomplex $C^{\infty}_*(X,\mathbb{R})$ spanned by the *smooth* maps³ $\Delta^* \to X$. By a suitable local smoothing procedure⁴ which is a bit too technical to discuss here,

¹ Of course singular (co)homology is defined for more general coefficients, but we won't need that here

² Recall that the \mathbb{R} dual of an \mathbb{R} -vector space V is the vector space $\operatorname{Hom}_{\mathbb{R}}(V,\mathbb{R})$.

³ The simplex Δ^n is not a smooth manifold, but a *smooth manifold with corners* which locally looks like $\mathbb{R}^k \times [0, \infty)^{k-n}$. Basically everything you learned this semester about manifolds with boundary carries over to such manifolds with corners.

⁴ See Lee, Theorem 18.7

one can show that the inclusion $C^{\infty}_{*}(X,\mathbb{R}) \hookrightarrow C_{*}(X,\mathbb{R})$ is actually a homotopy equivalence of chain complexes. Hence we can redefine $H^{sing}_{*}(X)$ as the homology of $C^{\infty}_{*}(X,\mathbb{R})$; the dual of $H^{sing}_{*}(X)$ is then again $H^{*}_{sing}(X)$; in other words you may assume that all maps $\sigma \colon \Delta^{n} \to X$ are smooth.

In the following exercises you will show that $H^*_{sing}(X)$ is isomorphic to $H^*(X)$ by an explicit integration procedure.

Exercise 1. Show that there is a well defined map $R_X \colon \mathrm{H}^*(X) \to \mathrm{H}^{\mathrm{sing}}_*(X)^{\vee} = \mathrm{H}^*_{\mathrm{sing}}(X)$, called the **deRham map of** X which sends (the class of) an *n*-form ω to (the class of) the linear functional $\int_{-} \omega \colon \mathrm{H}^{\mathrm{sing}}_*(X) \to \mathbb{R}$ given by $\sigma \mapsto \int_{\Delta^n} \sigma^*(\omega)$. Prove that R_X is natural in X.

Recall (or learn) that singular homology admits a Mayer-Vietoris exact sequence

$$\xrightarrow{\partial} \operatorname{H}_{n}^{\operatorname{sing}}(U \cap V) \to \operatorname{H}_{n}^{\operatorname{sing}}(U) \oplus \operatorname{H}_{n}^{\operatorname{sing}}(V) \to \operatorname{H}_{n}^{\operatorname{sing}}(X) \xrightarrow{\partial} \operatorname{H}_{n-1}^{\operatorname{sing}}(U \cap V)$$
(3)

whenever we cover X by two opens. See Lee, Theorem 18.4 for an explicit description of the maps in the sequence. Passing to duals then yields a Mayer-Vietoris sequence for singular cohomology.

Exercise 2. Prove that the deRham map $R_X \colon H^*(X) \to H^{sing}_*(X)$ is compatible with the Mayer-Vietoris sequences of $H^*(X)$ and $H^{sing}_*(X)$.

Exercise 3. Show that the deRham map of \mathbb{R}^n is an isomorphism for all n.

Exercise 4. Use an inductive procedure to show that the deRham map is an isomorphism for each manifold X which admits a finite good cover.

One can in fact prove that the de Rham map of *every* manifold is an isomorphism (see Lee, Theorem 18.14).